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Two-Electron, One- and Two-Center
Integrals

MURRAY GELLER
Jet Propulsion Laboratory, Pasadena, California
(Received 14 February 1963)

IN a recent note,! Prosser and Blanchard mentioned
the use of the Fourier convolution theorem method
for the evaluation of one-electron, two-center integrals.
This method has been applied by the author to one-
electron integrals involving nonintegral Slater or-
bitals? and to one-electron integrals involving solid
spherical harmonic operators.?

The present note is concerned with the application
of this method to the evaluation of two-electron, two-
center integrals? (see Fig. 1) of the type

I=ff(ral)g(rb2) 7{T12) drydTs. (1)

The integral is recovered by
I=(2m)*|f(K)g(k)h(K) exp(—ik-R)dk, (2)

where the bar indicates the appropriate Fourier trans-
form

3(k) = f exp(ik-T) g (r)dr. 3)

In the corresponding one-center case (the limit as

R goes to zero), the centers @ and & coalesce (so that

the subscripts ¢ and b can be dropped) giving rise to
the integral

T= [0 gx hradrdr, (4)
which is recovered by
J= (213 f](k) FK)A(K)dK. (5)

As an example of Egs. (4) and (3), Pitzer and
Hameka® have discussed the one-center integral

J=(32x)"2 f 1% Cos2017s* OS2y (71572 — 3215%1570)

X CXp ( —ri— 1’2) sin01 sinﬁzdndrzdﬁldﬁgdcﬁld@. (6)

The transform® of f(r)) =ry cos?¥; exp(—r1) is given
by

FK) =32r (1+4+-k) 41 —k>—4k2Py(cosu) ].  (7)

Since the function g(r;) is identical, its transform is
also given by Eq. (7). For the transform of
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B(Ty) =71573— 3212155 = — 2 Py (cosbys) /ns,

(8)
we have
h{Kk) =8x Py(cosu) /3. (9)

After substituting Eqgs. (7) and (9) into Eq. (5), and
integrating over # and v (the angular components of
the & vector), we find

32 (= B = B
J—T&{llfo mﬁdk_% m—dk]. (10)

When these two simple integrals of Eq. (10) are evalu-
ated, the result J=—1257 Is obtained in agreement
with the result quoted by Pitzer and Hameka.?

An interesting point to notice is that this method
does not involve the introduction of delta-function
terms. The method is further not limited to one-center
nor to specific forms for the f, g, and % functions.

The author wishes to acknowledge the informative
discussions with Dr. Howard B. Levine of North
American Aviation Science Center as to the range of
validity of the Fourier convolution theorem.
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